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Abstract. A method of solving the Brinkman equation, using Cartesian tensors, is developed. General expressions 
for the velocity vector and the pressure, which can directly be used in situations where boundary conditions are 
expressible in Cartesian-tensor form, are obtained. It is shown how the drag on a porous sphere can be directly 
and easily calculated using this method. 

1. Introduction 

There are very few good model equations which give a faithful macroscopic description of  
the flow in a porous medium. Basically, there have been differences of opinion as to which 
is the most appropriate form of the equation of motion. While everyone recognizes the 
limitations of Darcy's law, there is no other equation in the literature which has been 
unconditionally accepted by different authors. Thus there have been proposals to add 
non-linear inertia terms, quadratic velocity terms, etc. in the equations of motion or to 
employ Darcy's law but to allow discontinuities in the fluid velocity at the surface of  the 
medium. 

One equation which has gained considerable success, particularly when the motion is 
slow, is the Brinkman equation [1]. It is believed that when the porosity is large, this 
equation, which is obtained by adding a Laplacian term in velocity to Darcy's law, gives 
satisfactory results. By considering slow flow in random arrays of fixed spheres and for 
suspensions, Howells [2] and Hinch [3], respectively, confirm the validity of the Brinkman 
equation. There is also the experimental verification of this equation in the works of 
Matsumoto and Suganuma [4], who measured the settling velocity of model flocs made of 
steel wool. 

In the present note we develop a general solution of  the Brinkman equation, based upon 
the use of Cartesian tensors. In essence it is an extension of the method developed earlier [5] 
to study the viscous creeping-motion equation. An integral-equation approach, making use 
of Green's function for the Brinkman equation, has been discussed by Higdon and Kojima 
[6]. It is believed that the solution obtained by the present method will be directly applicable 
to porous-flow problems for which the boundary conditions are given in the Cartesian- 
tensor form and to those that can easily be written in this manner. In the next section we 
develop the solution based upon the use of arbitrary, spatially constant, second- and 
third-order tensors. In this manner we are able to determine the general expressions for the 
velocity and pressure field. To illustrate the use of the method, we apply it to find the drag 
of a porous sphere in a single-fluid flow. 
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2. Basic equations and their solution 

We consider the velocity field satisfying the continuity equation 

v . a  = o, (1) 

and the Brinkman equation 

-V/~ + /~V2fi = ; u .  (2) 

Here fi is the volume average velocity,/~ the interstitial average pressure, # the viscosity of 
the fluid and k the permeability of the porous medium. The above are four partial differential 
equations for the four unknowns fi and ft. On taking the divergence of  equation (2) and using 
(1), it turns out that solving the above system is equivalent to finding the solution of the 
equations 

V 2 p  = O, (3) 

VZfi -- C2fi = Vp (4) 

where p = p-  1/~ and C 2 = k -  1. Once fi is so determined we require it to satisfy equation (1). 
We now generate solutions of the above system of equations which involve spatially- 

constant second- and third-order tensors a 0 and b~jk, respectively. Following [5], we write the 
scalar invariants linear in ai/and b~jk, in combination with the position vector xg (r 2 = x~xi), 

a s  

aii , 8qkakiXi , aqxi xj  , bimmXi , bmimXi , bmmiXi , bqk x ix j  xk .  

On assuming the form ofp(r )  to be 

p(r)  = H ~  + Hl(r)ei/kajkxi + H2(r)bimmXi -}- H3(r) bmimXi + H4(r)bmmgX~ 

+ HS(r) a(jxixj + H6(r) bijkxixjxk, 

it is found from (3) that (cf. [5]) 

HO(r) - �89 -3 + B~ - '  + A ~ _ 1ASr2 

l- l '(r)  = S l r  -3 + ,41, 

n Z ( r )  -- ~ n 6 r  -5 + B~F -3 + A~ -- 1 ~6..2 

H3(r) IB~r -5 + B~r -3 + A~ -- 1 A6"2 
- ~ . L l r  , 

(5) 

(6) 



H 4 ( ~ )  = 

HS(r) = 

H6(r) = 

where A~. and Bj are abitrary constants. 
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- 1 B ~ r  - s  + B~r -3 + A~ - 1 ~ - ~  
~ z L  1 �9 

B~r -~ + .4~, 

B6r -7 + A 6, (7) 

Equations (4) and (6) suggest that the velocity component of fi in the direction of  xp can 
be assumed to be of  the form 

C,p(r) = h~ Xp + hl(r)eokak~x,x , + h~(r)~,jkakj + h~(r)bimmx, x .  + h~(r)b.m.. 

+ h~(r)b.,g.,X~Xp + h32(r)bmp,. + h4(r)b,,~,x~xp + h~(r)bm,.p + h~(r)aux~xix p 

+ h~(r)apjxj + h~(r)a:px: + h~(r)b~j~xgx:xkxp + h6(r)bpjkXjXk + h6(r)bjpkxjx~ 

+ h6(r)bjkpx:xk. (8) 

Substitution of  (8) and (6) in equation (4) yields the following type of  differential equations: 

4 1 
(h~ " + - (h~  - C2h ~ = -(I-10)" - 2h~, 

r r 

(h',)" + 6 (h l ) '  - C~h ', = 1 (i_i~y ' 
r r 

2 
(fiE)" +-(h~2)"  -- CZh~ = H ~ -- 2hl, 

r 

2 
(h 2)" + - ( h ~ ) "  - C 2h 2 = H 2 -- 2h~ - 2h 6, 

r 

6 (h 6)" + - ( h  6)' _ C 2h 6 = H 6 _ 2h 6, 
r 

(9) 

where the dashes denote differentiation with respect to the variable r. 
We now consider the following equation, 

21 
y"(r)  + - - y ' ( r )  - C2y(r) = 0 ( 1 =  1 , 2 , 3 , 4 , 5 ) ,  (lO) 

r 

and state some properties of  the solutions of  (10) which are used to construct the solutions 
of  equations (9). 
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PROPERTY 1. If  Yt (r) satisfies (10) then Yt + ~ (r) = (1/r) (Yt)' satisfies 

2(/ + 1) 
y" + y" -- C2y = O. (11) 

r 

PROPERTY 2. I f  Yt + 1 (r) satisfies equation (11), then Yt + 1 (r) also satisfies the inhomogeneous 
equations 

21 Y' _ y" + - -  C2y = --2yt+2 (12) 
r 

and 

2(1 -- 1) y,  _ 
y" + CEy = 4yt+2, 1 >I 2. (13) 

r 

The proofs of  the above properties can be verified by substitution of  the appropriate 
expressions in the above equations and rearranging the resulting terms. 

Let Q = Cr and y = uQ -~§ Equat ion (10) then becomes a modified Bessel equation, 

Q2 d2u du  
+ Q ~ _  [Q2 + ( l -  1)2]u = 0, (14) 

and admits /~-~/:(Q) and l_t+u2(Q ) as two linearly independent solutions. Therefore, it 
follows that  

Yl = C 2 l - l ( C r ) - t + l / 2 I I - I / 2 ( C r ) ,  

y~ = C 2J - l ( Cr)-t  + l/2 I_ t + l/2 ( Cr) (15) 

are two linearly-independent solutions o f  (10). 

PROPERTY 3. For  Yt and y* as defined in (15), we have 

l d  l d  
Yl+l r dr yl(r)" Y~+l r dr y*(r) '  (16) 

and 

d 
r-~rrYt+l(r ) + (2l + 1)yl+~(r) = C2yt(r), 

d 
r-~rY*+l(r ) + (2l + 1)y*+l(r ) = C2y*(r). (17) 
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The verification of the above, by use of  the properties of  Bessel functions, is straightforward. 
Making use of the above properties, we now write down the solutions of  equations (9). 

These are: 

h~(r) 
1 1 

C2 B~ r-5 + ~-~ B~ r-3 
2 

+ ~ Af + A~y3(r ) + A~ + B~y~'(r) 

+ B ~ y* (r), 

3 B~r_ 5 Bl . , Ir~ hll(r) = --~ + A~y3(r) + 2Y3 ~ ,, 

1 
h~ (r) = ~-~ B~ r-3 _ __ 

1 
C2 A 1 + A~y2(r ) + A~yl(r) + B~y*(r) + B~y*(r), 

1 3 2 
hi(r ) = C 2B6r -7 + ~ B~ r-5 + - ~  A 6 + A6y4(r) + A~y3(r) 

+ B 6 y* (r) + B23 y* (r), 

1 1 
h22(r) - 5~- 5 B6r -5 _ C- ~ B 2 r  -3  _ _ _  

1 1 
C2 A~ + ~ A6r 2 + A6y3(r) + (A~ + A6)y,_(r) 

+ A2yl(r) + B6y~'(r) + (B 2 + B6)y*(r) + B2y~'(r), 

h~(r) 
1 1 ~-~ B6r -7 + ~-~ B~r -5 2 

+ ~ A6 + A6y4(r) + A~y3(r) + B6y~(r) 

+ B~ y* (r), 

3 
h~(r) = 5C 21 B~r-S C2 B~r-3 _ __ 

1 1 
C2 A~ + ~ A61 r2 + A6y3(r) + (A~ + A6)y2(r) 

+ A3yl(r) + B6y*(r) + (B~ + B6)y*(r) + B~y*(r), 

1 3 2 
h~(r) = -~  B61 r-7 + -~5 B'~ r-5 + ~-~ A6 + A6y4(r) + A~y3(r) + B6y*(r) + B4y*(r), 

1 1 
hi(r) - 5C 2 B6r-5 C2 B4r -3 _ _ _  

1 1 
C z A 4 + ~ A6r2 + A6y3(r) + (A 4 + A~)y2(r) 

+ A4yl(r) + B6y*(r) + (B 4 + B6)y*(r) + Bay*(r), 

5 
h~(r)  = - ~  B ~ r  -7  + A~y4(r ) + B~y*(r), 
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1 
h~-(r) -- B~r-5 _ _ _  

C2 
1 

C2 A~ + A2 5 Y3 (r) + A~ Y2 (r) + B2 5 y* (r) + B~ y* (r), 

1 
h~(r) -- c2 B~r-5 _ _ _  

1 
C2 A~ + A~y3(r ) + A54yE(r) + B~y*(r)  + B54y*(r), 

7 
h6(r) = ~ n6r-9 _q_ A6ys(r) + B6y*(r) ,  

1 
h 6(r) -- C2 B 6r-7 - -  - -  

1 
C z A 6 + A6ya(r) + A6y3(r) + B6y4*(r) + B6y*(r) ,  

1 
h 6(r) - C2 B 6r-7 - -  - -  

1 
C 2 A6 + A6 Y4 (r) + A 6 Y3 (r) + B~ y* (r) + B 6 y* (r), 

1 1 
h~(r) - C2 B6r -7 C2 A 6 + A6y4(r) + A6y3(r) + B6y*(r)  + B6y*(r) .  (18) 

The equation of  continuity imposes the following restrictions upon the arbitrary constants: 

A ~  S ~  0, 

A~ + A, ~ s~ + s ,  ~ 
A~ - S ~  - 

C 2 ' C 2 ' 

C 2' C 2' 

= - -  C 2  ' B 6 = - -  C 2  ' 

Ai - Ai B~ - s ~  
C 2' C 2, 

C 2' C 2' 

A4 = A l s ~  
C2, B~3 - C2. (19) 

When the changes made in (19) are introduced in (18), we find the final form of  the 
solutions to be 

h~(r) = 
1 1 2 1 1 5 

c 2 B f r - 5  + - ~ S ~  -3 + y - ~  A~ -- - ~  (A~ + A~)y3(r) -- - ~  (B~ + B~)y?(r) ,  

1 
hi(r) = 3 ~ B~r -5 - - -  1 1 B~y3(r) ' C 2 A~y3(r) -- --~ 
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h~(r) 
1 1 1 1 

A~y2(r ) + A~y,(r) -~sy*(r) + B~'y*(r), C 2 B~r -3 C 2 All - -  ~-~ 
U -  

h2(r) 
1 1  1 1 1 1  1 

= 5 C 2 B6r- '  C 2 B~r-3 -- C ---7 A2z + -5 - ~  A61r: - -~5 ( A] + A64 + A~)y3(r) 

( 1 ) 
+ - - ~ s A ~  + A 6 y2(r) + A]y,(r)  - - ~ ( B  6 + B 6 + B6)y~'(r) 

(1 ) 
+ -~5 B24 + B6 y*(r) + B2y*(r),  

h~(r) - 
1 1 2 1 A 6  1 1 , 

c2B6r-7  + 3-~sB~r-5 + - ~ - ~  1 -~5(A~ + A~ + A 6 ) y 4 ( r ) - - ~ A ~ y 3 ( r )  

1 1 
- Y 3 ( ) ,  C2 (B 6 + B64 + B6)y *(r) ~ B24 * r 

h~(r) = 
1 3 2 1 1 1 

C 2 B~ r-7 + --~ B~ r-5 + -~ -~5 A61 - --~ ( A6 + A64 + A6)y,(r) - -~5 A]y3(r) 

1 1 * r  C2 (B 6 + B 6 + B~)y*(r) - - ~  B 3 Y3 ( ) ,  

h~(r) 
1 1 

- 5 C 2B6r-s  - - - -  
1 1 1 1 1 

C z B?r -3 C 2 A 3 + -~ ~ A6r-2 _ C--- 5 (A 6 + A 6 + A6)y3(r) 

( ) 1 
+ A46 _ ~_ ~1 A3 y2(r) + A34Yl(r) -- ~ (B~ + B~ + B6)y*(r) 

1 B ~ )  y * ( r )  + B 3y* ( r ) ,  + (B ~, - -~ 

h~(r) - 
1 3 2 1  1 1 

C2 B6r -7 + --~ B4r -5 + ~--~ A 6 _ - ~  (A 6 + A64 + A6)ya(r) - - ~  A~y3(r) 

1 1 
Cz (B~ + B64 + B6)y * (r) - - ~  B44y * (r), 

1 1 1 1 1 
_ 1 B6r_ 5 C2 B4r -3 C2 A 4 + ~ - ~  A6~r 2 -- (A] + A~ + A6)y3(r) 

5C 2 - ~  

( 1 ) 1 
+ A6 -- ~ 5 A I  y2(r) + A44y,(r) ---~5(B63 + B64 + B~)y*(r) 

1 B~) y*(r) + ~y*(r), + (B 6 - -~ 
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1 
h~(r) = 5 ~-5 B~ r-7 - - - -  

1 1 
C2 (A] + A])y4(r ) - - ~  (B~ + B54)y*(r), 

1 
h 5 ( r )  - -  C 2  B~r-5 _ _ _  

1 1 1 
C2 (A~ + A~)y3(r ) + A~Y2(r ) - ~ A~ -- - ~  (B~ + B~)y*(r)  

B 5 . ,  [ r  ~ + 3 Y2 ~ 1, 

I 
h~(r) - C2 B~r -~ - - -  

1 1 
c~ A~ - - ~  (A~ 

1 
+ A54)y3(r) + A54y2(r) -- - ~  (B~ + B~) y* (r) 

+ B54 y* (r), 

7 h 6 (r) = - ~  B 6 r-9 - -  - -  
1 1 

C 2 ( A6 + A64 + A6)ys(r) -- - ~  (B 6 + B 6 + B6)y*(r),  

1 
h6(r) - C2 B6r -7 _ _ _  

1 1 
c2 A~ - - ~ ( a ~  + A64 + A6)y4(r) + Atay3(r) 

1 
B 6 . ,  :r ~ c2 (B~ + B~ + SDy*( r )  + 3y3 ~ J, 

1 
h 6(r) - c 2 B  6r-7 _ _ _  

1 1 
C 2 A 6 _ --~ (A 6 + A 6 + A6)y4(r) + A6y3(r) 

1 
C z ( B6 + B 6 + B~5)y*(r) + Bty*(r ) ,  

1 
h~,(~) = c 2 S ~  -~ _ _ 

1 1 
C2 A~ -- - ~  (A 6 + A 6 + At)y4(r) + A6y3(r) 

1 
C2 (B 6 + B 6 + B~)y*(r)  + B~y*(r).  (20) 

In the above equations, the functions y,. and y* (i = 1, 2, 3, . . . ) are defined through 
equation (15). We remark that constraints (19) do not suggest any changes in the form of 
solution (7) for the pressure. 

3. Hydrodynamic force on a porous sphere 

As an application of  the method described in the previous section, we now consider the flow 
of  a viscous fluid past a porous sphere. A solution to this problem when the flow, both inside 
and outside of the sphere, is approximated by Stokes' equation has been considered by 
Lenov [7]. It is, however, now believed that, in order to describe more accurately the flow 
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inside the porous sphere, Stokes' equation should be replaced by Brinkman's equation. 
Theoretical justification supporting these views has been proposed by Howells [2], Hinch [3] 
and many others. On the other hand, the indiscriminate use of this equation, for all 
situations, has also been questioned. Here we consider the fluid outside the sphere to be a 
Stokesian fluid with undisturbed velocity U far from the sphere. Inside the sphere we assume 
that the average velocity and the pressure satisfy the Brinkman equation (2). With the 
boundary conditions that both the velocity and surface forces be continuous across the 
surface of the porous sphere we determine the velocity and pressure distributions both inside 
and outside of the sphere. We then use these quantities to calculate the drag on the sphere. 

For the Stokes flow outside the sphere we use the solution obtained in our previous paper 
[5] and select the Cartesian-tensor form of the boundary conditions as 

Po~ = aii, Uto~ = eOkak j = Ue3. (21) 

It then follows that (c.f. eqs. (20), (21) and (22) of [5]) 

p(O) = Poo + A l l r - 3 U x 3 ,  (22) 

= ~.nt_-3, - � 8 9  (l 1, 2, 3). (23) u~ ~ (A~ r -5  + ~ " 1 "  I U x 3 x  t + (1 a~l , -3  ~ 3 "  + ----- 

where we have added the superscript (o) to denote quantities outs ide  of the porous sphere. 
For the fluid inside the sphere we will use the superscript (i). For the flow inside the porous 
sphere we select 

pO) = 411 Ux3,  (24) 

Ul i) = C 2 A { U x 3 x ,  + - --~ .41 - ~ A ~ y z ( r )  + ,7t{yl(r) Uf t3 ,  (l = 1, 2, 3). 

On redefining the four constants appearing in the above equation as 

A = A~, B = AI,, D = AI, E = ~,/~, 

we can write the expressions in component form: 

p(O) = B r -  3 Ux3 , 

u~ ~ = ( Z A r  -3 + Br  - I  + 1)Ucos  0, 

u~ ~ = (~ A r  - 3 --  �89 Br  -1 - 1) U s i n 0 ,  

u(r ~ = O, 

p(i) = D U x  3, 

(25) 

(26) 
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- ~ D + ~ Ey2(r) U cos 0, 

[1 , ] 
-C D + - ~  Eye(r) - ey ,(r)  u~ ) = U sin O, 

u~ ) = O. (27) 

On applying the boundary conditions that the velocity and the stress component be con- 
tinuous across the surface of  the porous sphere (r = a) we get 

2 A + B a  2 + a3 _ 1 2 Da3 + - ~  Ea3 Y2 (a), 

1 1 
�89 -- 1Ba2 -- a 3 - c2  Da 3 + ~ Ea3y2(a) -- Ea3yl (a) ,  

4 
- 4A - 3Ba 2 = -- Da5 + -~5 EaSy3 (a), 

1 1 2 
- ~ A  - �89 2 - -  a 3 = - ~  D a  3 + - -~  EaSY3(a) - - ~  E a 3 y z ( a )  - -  EaSyl(a) .  (28) 

On solving this system of  equations we obtain 

[3 ] 
A = -~5 a3y2(a) + laSy2(a)  -- a3yl (a)  E, 

B = - a 3 y 2 ( a )  E, 

D = --Y2(a) E, 

[3 l' 
E = 3a 3 - ~  a3yz(a) + 2aSyz(a) + 2a3y, (a)  (29) 

We note that in writing (29) we have also used the result that aSy3(a) + 3a3yz(a) = CZa2y~ (a). 

Furthermore, we also want to emphasize that a variation in the boundary conditions will 
result in the different values of  the constants. When constants determined in (29) are 
employed in (27), we get the complete expressions for the pressure and the velocity distribu- 
tion. 

In order to determine the drag on the porous sphere, which will be directed along the 
symmetrical axis, we need to calculate 

D = 2rm 2 f2 (tr, cos 0 - t,o sin 0) sin 0 dO. (30) 



A Cartesian-tensor solution o f  the Brinkman equation 187 

On calculating the expressions for the stresses in spherical polar coordinates, by using (26), 
we find 

D = -- 4~t#UB (31) 

where 

. _  , [3  ] 
a3y2(a) -- 3a6y2(a) -~ aaY2(a) + 2aSy2(a) + 2a3yl(a) . (32) 

Equations (31) and (32) thus give 

12a6rc#U[ 3-~a 3 + 2a 5 + 2a3Yl(a)] -t (33) 
D =  c 

Clearly, when k ~ 0, i.e., C ~ oo, the above reduces to the classical value determined by 
Stokes (since in that case the porous sphere behaves like a solid sphere and u~ ~ = 0). For 
nonzero values of k, it is found that the drag in a porous sphere is lower than that of a solid 
sphere and that it decreases when k increases. 

It is of some interest to express asymptotic values of the drag D in equation (33) for low 
and high values of the permeability parameter, k (=  1/C2). For large permeability we can 
write y,(a)/y2(a) in (33) as 

y , ( a ) _  r 1_ sinh ( C a ) l / [ C  cosh (Ca) sinh (Ca)l  
Y2(a) La _IlL ,: aa J 

I C ~21-1 3 3a2 ( a2 ) 
= c o t h ( C a ) -  ~ - ~  + -15 - 3 k + - ~  . (34) 

Subsitution of (34) in (33) and further simplification gives 

7gUaE~ 4 a 4 ( a 6 ) ]  
D = 4 # T  15k 2 + O ~ . (35) 

For low permeability we can approximate Yl (a)/y2(a) by 

a 
Y ' ( a___2 ~ - = a v/-k ' 
y2(a) c 

and in this case (33) gives 

D = 61azrUall x / ~ + o ( k ) l  - ~ ~ . (36 )  

We point out that both the above expressions agree with the results of Higdon and Kojima 
[6] who had derived them by solving integral equations. 
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